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SUMMARY 

Crystallized layer growth from a hot polymer melt on a 
cold metal surface is treated theoretically. The classical so- 
lution of the boundary value problem for "heat diffusion con- 
trolled" growth is replaced by a (numerical) solution of the 
more adequate boundary value problem for "nucleation rate con- 
trolled" growth. In this way the unrealistic square root depen- 
dence of the layer thickness on time, possessing an infinite 
initial slope, is replaced by a dependence with finite initial 
slope, which furnishes the experimentally relevant growth speed 
at the temperature of the cold wall. The importance of this new 
approach for the description of the processes occurring in the 
material during the quench on a cold wall is stressed. 

INTRODUCTION 

In the course of experimental activities aiming at the de- 
termination of the speed of crystallized layer growth from a 
sheared polymer melt (I) (2) (3) the authors got engaged into 
the problems of a correct theoretical treatment of their fin- 
dings. As the crystallized layer initially grew linearly with 
respect to the time elapsing from the moment of contact with 
the cold surface, the classical treatment had to be ruled out 
immediately, since this treatment results in the prediction of 
an infinite initial growth speed (4). After all, it seems very 
surprising to the present authors that, so far, nobody has dis- 
cussed this shortcoming, to say nothing of the omission to pro- 
pose a more adequate treatment of the problem (5) (6). 

In this connection, however, it should be mentioned that 
the discrepancy between the results of classical treatment and 
experimental findings has first been observed with swelling 
experiments (7). As is well known, the basic equations for mass 
and heat transfer are of identical structure. However, since it 
was observed that swelling of the polymer was only possible 
after something like a phase transition had taken place, the 
boundary value problem is different from ours. An adequate so- 
lution was given recently (8). Translated into our situation 
this would mean that the temperature of the polymer melt should 
stay at its original value until the crystallization front ar- 
rives. In reality, however, this temperature does not remain 
constant but goes down at least until the melting point is 
reached. It even decreases much farther until, finally, the 
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supercooled melt star ts  crystallizing at a finite speed, which 
is a unique function of temperature (9). The pertinent treat- 
ment will now be outlined. 

THE BOUNDARY VALUE PROBLEM 

The geometry envisaged is that of two parallel and infi- 
nitely extended plates with the polymer filling the intersti- 
tial space. Before the experiment is started, both plates are 
thought to be at a temperature T i well above the thermodynamic 
melting point T m of the polymer. At time zero one of these 
plates is thought to be suddenly cooled to a temperature T w 
well below the thermodynamic melting point of the polymer. In 
order to achieve the growth of a smooth layer with a sharp de- 
marcation with respect to the melt, one has to introduce a 
shearing. Mentally this can be accomplished by the introduction 
of a constant speed of one plate with respect to the other. As 
is well known, the amount of shearing is of great influence on 
the speed of crystal growth (i0) (i) (2) (3). Mathematically, 
however, this flow condition does not enter as a convection 
term into our problem, since the plates are thought to be in- 
finitely extended. 

The following dimensionless variables are introduced: 

t ~ af/D 2 , x = x/D , = t 8 = (T-Tw)/(Ti-T w) 

y : af/a c , ~ : If/k c , A = H/[c (Ti-Tw) ] ...(i) 

where x is the distance from the cold plate, D is the fixed 
distance between the plates (density changes by the solidi- 
fication being ignored), T is the temperature, af and a c are 
the heat diffusivities of the fluid and of the crystal, re- 
spectively, kf and kc are the corresponding heat conductivi~ 
ties, H is the latent heat of crystallization and c is the 
heat capacity of the crystal, t ~ being the Fourier number. 

With these variables the equation of conduction of heat 
reads for the pertinent phases: 

~O/~t w : (l/y) ~28/~x ~2 (crystal) 

~8/~t ~ = ~2@/~x~2 (fluid) ...(2) 

The initial condition is 8(O,x W) = i, whereas the four boun- 
dary conditions read: 

e(tW,O) = 0 ...(a), @(tW,l) = i ...(b) 

= e~@/~X~l + X A dx~/dt ~ (c) el~ x~i c f " " " 

ec(t ~, x~( t~))  = Of ( t  ~, x~( t~))  . . . ( d )  . . . (31  

By eq. (3c) the heat balance at the moving boundary is expres- 
sed, x~ being the distance of this boundary from the cold wall. 
By eq. (3d) the continuity of the temperature at this boundary 
is postulated (physical equilibrium). 

In the classical treatment (4) (ii) boundary condition 
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(3d) is tightened by the postulate that 0e = Of must be equal 
to @m = const. (thermodynamic equilibrium). In avoiding over- 
determination, in boundary condition (3c) one has to give 
dx~/dt W free. In this way the layer growth becomes "diffusion 
rate controlled". Putting x~ = #t W one obtains the well known 
analytical Neumann solution (ii) (for penetration into half in- 
finite space). According to this solution the polymer melt 
must show the ability to crystallize at arbitrarily increasing 
rates when zero time is approached. For this reason the Neu- 
mann solution must be discarded. 

Alternatively, however, one can avoid to predetermine the 
value of 0 c = Of and consider it as the solution of the prob- 
lem. According to this procedure one has to introduce a growth 
speed dx~/dt W, as determined by experiment, into boundary con- 
dition (3c). In this way this growth speed is accepted as 
being "nucleation rate controlled". The mathematical problem 
becomes now much more complicated, since dx~/dt ~ is a function 
of the crystallization temperature, which on its part, depends 
on t and xc(t ): 

dx /dt = ...(4) 

This problem has been solved numerically, using appropria- 
te data for polypropylene (y = 0,54; e = 0,60; A = 0,9 (with 
Ti-Tw = 155~ and a parabolic approximation for the function 
r of eq. (4), possessing a maximum Cm = 0,52 (T w = go~ 
and going through zero at the melting point Tm and at the 
glass-transition temperature Tg(160~ and 60~ respectively). 
This Cm is derived from the highest growth speed observed so 
far by us on polypropylene under shear. For A, also several 
other values, including zero, were chosen in order to show 
that this parameter has practically no influence at small 
Fourier numbers t ~. In our case of D = 1 mm t ~ = 1 corresponds 
(for polypropylene) to t = 11,63 s, which is a rather long 
time, if injection moulding is envisaged. In Figs. i to 4 the 
obtained results are shown. 

CONCLUSIONS 

Details of this calculation will be published elsewhere. 
The fact that the reduced latent heat A is of minor influence 
at low Fourier numbers opens the way for approximate analyti- 
cal solutions in the range of Fourier numbers relevant to in- 
jection moulding. From Fig. 1 we learn that the initial slope, 
which gives the layer growth speed at the temperature of the 
wall, must be readily accessible to an experimental determina- 
tion. In fact, the curves do not show pronounced curvatures at 
t W = O. From Figs. i and 2 we learn that the approach of the 
steady state is considerably retarded. This is due to the fact 
that the crystallization speed goes to zero when the melting 
point is reached. 
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Fig. i: Reduced distance of crystallization front from cold 
wall against Fourier number (= reduced time) for 
various values of A, including the realistic value 0,9. 
Neumann's solution is indicated at the left side. For 
finite gap width D it should level off at the dashed 
line. 
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Fig. 2: Reduced temperature at crystallization front against 
Fourier number for various values of A . According to 
the classical approach this reduced temperature should 
be time independent and at the level of the dashed 
line. 
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Fig. 3: Reduced temperature at crystallization front against 
reduced distance of this front from the cold wall for 
A = 0,9 after elimination of reduced time from 
Figs. 1 and 2. 
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Fig. 4: Complete temperature profiles for A = 0,9. (Reduced 
temperature vs. reduced x-coordinate.) The curves 
from left to right belong to Fourier numbers 0,0001; 
0,001; O,O1; 0,03; 0,i; 0,2; 0,4; 170 and ~. By 
connecting the kinks of the curves one obtains Fig.3. 
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